

MATERIAL SCIENCE AND METALLURGY (ME303PC)

COURSE PLANER

I. COURSE OVERVIEW:

Materials and metallurgical engineering is concerned with the generation and application of knowledge relating the composition, structure and processing of materials to their uses. The field encompasses the spectrum of materials that covers metals, ceramics, polymers, semiconductors, and combinations of materials or composites.

Materials engineering is an interdisciplinary field involving the properties of matter and its applications to various fields of science and engineering. The science investigates the relationship between structure of materials and their properties. New developments such as nano science and nanotechnology continue to propel materials science and engineering to the forefront of the studies (at many universities) around the world.

Metallurgical engineering is a broad field that studies the physical and chemical behavior of metallic elements, inter metallic compounds and their alloys. Extractive metallurgy involves extracting metal from ore. Chemical metallurgy deals with chemical properties of metals including uniting of different metals with one another to form alloys.

II. PREREQUISITE(S):

The knowledge of following subjects is essential to understand the subject:

1. Physics

2. Chemistry (bonding, metals and non metal).

III. COURSE OBJECTIVES:

The objectives of the course are to enable the student

- To understand the basic crystal structures, defects and mechanisms
- To be able to analyse the phase diagrams and interpret them
- To be able to understand various heat treatment process and change in micro structures
- To be able to understand cooling curves and final micro structure properties
- To be able to interpret various kinds of alloys and its properties

IV. COURSE OUTCOMES

Sl. NO	Description	Bloom's Taxonomy level
CO1	Application of knowledge relating the composition, structure and processing of materials to their uses. The field encompasses the spectrum of materials that covers metals, ceramics, polymers, semiconductors, and combinations of materials or composites.	Knowledge, Understand,Appl y(Level1, Level2,Level 3)
CO2	Able to investigate the relationship between structure of materials and their properties. It also includes elements of applied physics and chemistry, as well as chemical, mechanical, civil and electrical engineering	Understand,Appl y(Level2,Level 3)

		7
CO3	Able to understand the new developments such as Nano-science and nanotechnology continue to propel materials science and engineering to the forefront of the studies (at many universities) around the world utilize fluid mechanics principles in design.	Understand(Level2)

V. HOW PROGRAM OUTCOMES ARE ASSESSED:

Program Outcomes (POs)	Level	Proficiency assessed by
PO1 Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.	2	Assignments, Practicals, Midterm and University examination
PO2 Problem analysis : Identify, formulate, review research literature, and analyze engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.	3	Assignments, Practicals, Midterm and University examination
PO3 Design/development of solutions : Design solutions for complex engineering problems and design system components that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.	3	Assignments, Practicals, Midterm and University examination
PO4 Conduct investigations of complex problems : Use research- based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.	2	Assignments, Practicals, Midterm and University examination
PO5 Modern tool usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.	2	Assignments, Practicals, Midterm and University examination
PO6 The engineer and society : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.	-	
PO7 Environment and sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.	-	
PO8 Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.	2	Practicals, Projects
PO9 Individual and team work: Function effectively as an		

	k		
	individual, and as a member or leader in diverse teams, and in multidisciplinary settings.		
PO10	Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.		
PO11	Project management and finance : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.	-	
PO12	Life-long learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.	2	Practicals,Mid term and University examination, Projects, Technical activites.

VI. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes (PSOs)	Level	Proficiency assessed by
PSO 1	The student will be able to apply the knowledge of Mathematics, Sciences and engineering fundamentals to formulate, analyze and provide solutions for the problems related to Mechanical engineering and communicate them effectively to the concerned.	2	Lectures, Assignments
PSO 2	Design mechanical systems in various fields such as machine elements, thermal, manufacturing, industrial and inter-disciplinary fields by using various engineering/technological tools to meet the mercurial needs of the industry and society at large.	2	Lectures, Assignments
PSO 3	The ability to grasp the latest development, methodologies of mechanical engineering and posses competent knowledge of design process, practical proficiencies, skills and knowledge of programme and developing ideas towards research.	2	Lectures, Assignments

VII. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

		Program Outcomes (PO's)											
CO's	P01	P02	P03	P04	PO5	906	P07	PO8	PO9	P010	P011	P012	
CO1	2	3	3	2	2			2				2	
CO2	2	2	3	2	2			2				2	
CO3	3	3	3	2	2			2				2	
Average	2	3	3	2	2			2				2	

Program Specific Outcomes (PSO's)

CO's	PSO1	PSO2	PSO3
CO1	2	1	1
CO2	2	1	1
CO3	2	1	1
Average	2	1	1

VIII. SYLLABUS:

Unit – I	Crystal Structure: Unit cells, Metallic crystal structures, Ceramics. Imperfection in solids: Point, line, inter facial and volume defects; dislocation strengthening mechanisms and slip systems, critically resolved shear stress
Unit – II	Alloys, substitutional and interstitial solid solutions- Phase diagrams: Interpretation of binary phase diagrams and microstructure development; eutectic, peritectic, peritectoid and monotectic reactions. Iron Iron-carbide phase diagram and microstructural aspects of ledeburite, austenite, ferrite and cementite, cast iron
Unit – III	Heat treatment of Steel: Annealing, Normalising, Hardening, Tempering and Spheroidising, Isothermal transformation diagrams for Fe-C alloys and microstructures development.
Unit - IV	Continuous cooling curves and interpretation of final microstructures and properties- austempering, martempering, case hardening, carburizing, nitriding, cyaniding, carbo-nitriding, flame and induction hardening, vacuum and plasma hardening
Unit - V	Alloying of steel, properties of stainless steel and tool steels, maraging steels- cast irons; grey, white, malleable and spheroidal cast irons- copper and copper alloys (Brass, bronze and cupro-nickel)- Aluminium and Al-Cu – Mg alloys- Titanium alloys

SUGGESTED BOOKS/RESOURCES:

TEXT BOOKS:

- 1. V. Raghavan, "Material Science and Engineering', Prentice Hall of India Private Limited, 1999.
- 2. W. D. Callister, 2006, "Materials Science and Engineering-An Introduction", 6th Edition, Wiley India.

REFERENCES:

- 1. Kenneth G. Budinski and Michael K. Budinski, "Engineering Materials", Prentice Hall of India Private Limited, 4th Indian Reprint, 2002.
- 2. U. C. Jindal, "Engineering Materials and Metallurgy", Pearson, 2011.

Additional Reading:

NPTEL WEB COURSE:

http://nptel.ac.in/courses/113105024/ http://nptel.ac.in/courses/113105024/1 http://nptel.ac.in/courses/113105024/2 http://nptel.ac.in/courses/113105024/3 http://nptel.ac.in/courses/113105024/4 http://nptel.ac.in/courses/113105024/5

NPTEL Video Course:

https://www.youtube.com/channel/UC9sKRSg8Kn5axYdORJUnqFw

https://www.youtube.com/watch?v=PVnftOMxl6w&list=PLbMVogVj5nJQbjE_u2K ZhUmCypfLunjG4 https://www.youtube.com/watch?v=FrhvKcjKdPo&index=5&list=PLbMVogVj5nJ QbjE_u2KZhUmCypfLunjG4

GATE SYLLABUS:

Crystal structure and bonding characteristics of metals, alloys, ceramics and polymers, structure of surfaces and interfaces, nano-crystalline and amorphous structures; solid solutions; solidification; phase transformation and binary phase diagrams; principles of heat treatment of steels, cast iron and aluminium alloys; surface treatments; recovery, recrystallization and grain growth; structure and properties of industrially important ferrous and non-ferrous alloys; elements of X-ray and electron diffraction; principles of optical, scanning and transmission electron microscopy; industrial ceramics, polymers and composites; introduction to electronic basis of thermal, optical, electrical and magnetic properties of materials; introduction to electronic and opto-electronic materials.

IX: COURSE PLAN

Lect ure. No.	Unit	Topics to be covered	Contents to be Covered	Link for PPT	Link for PDF	Course Learning Outcomes	Teaching Methodology	Refer ences
1		Unit 1 - Introduction Crystal Structure	Basics			Understand	Chalk & Talk/ PPT	T1,R1
2		Unit cells, Metallic crystal structures,	Understand arrangement			Understand	Chalk & Talk/ PPT	T1,R1
3		Ceramics. Imperfection in solids	Analyse arrangement	<u>https:/</u> /drive. google. com/dr ive/fol	<u>https://driv</u> e.google.co	Understand	Chalk & Talk/ PPT	T1,R1
4	1	Point, line, interfacial and volume defects	Basic knowledge of ceramics	ders/1y b0rLS- 8KZYn UNj_A	m/drive/fol ders/1hNT 5TPaexsmu Q2cB3sX2E bFN1tfJWp	Understand	Chalk & Talk/ PPT	T1,R1
5		dislocation strengthening mechanisms	To be able to understand defects	Ws0Q9 pQS0 WM0iu o?usp= sharing	Za?usp=sh aring	Understand	Chalk & Talk/ PPT	T1,R1
6		critically resolved shear stress.	To be able to understand defects			Understand	Chalk & Talk/ PPT	T1,R1
7		critically resolved shear stress.	Analyse mechanisms			Understand	Chalk & Talk/ PPT	T1,R1
8		Revision	Revise			Understand	Chalk & Talk/ PPT	T1,R1
9	2	Unit 2 - Alloys, substitutional, interstitial solid solutions	Basics of alloy formation			Understand	Chalk & Talk/ PPT	T1,R1
10		Alloys, substitutional,	Intro to phase			Understand	Chalk & Talk/ PPT	T1,R1

						5	- CZ	
		interstitial solid solutions	diagrams	https:/			-	
11		Phase diagrams: Interpretation of binary phase diagrams	Should be able to identify based on diagrams	/drive. google. com/dr ive/fol ders/1y b0rLS-	https://driv e.google.co m/drive/fol ders/1hNT 5TPaexsmu	Understand	Chalk & Talk/ PPT	T1,R1
12		Microstructur e development;	How micro structure works and looks	<u>8KZYn</u> <u>UNj A</u> <u>Ws0Q9</u> <u>pQS0</u>	Q2cB3sX2E bFN1tfJWp Za?usp=sh aring	Explain	Chalk & Talk/ PPT	T1,R1
13		Eutectic, Peritectic	How this phase is formed and its properties	<u>WM0iu</u> <u>o?usp=</u> <u>sharing</u>	arng	Understand	Chalk & Talk/ PPT	T1,T2
14		Peritectoid Reaction	How this phase is formed and its properties			Understand	Chalk & Talk/ PPT	T1,T2 , R1
15		Monotectic reactions	How this phase is formed and its properties			Understand	Chalk & Talk/ PPT	T1,T2 , R1
16		Iron Iron- carbide phase diagram	Should be able to draw and interpret them			Understand	Chalk & Talk/ PPT	T1,T2 , R1
17		microstructur al aspects of ledeburite	Should be able to analyse them			Understand	Chalk & Talk/ PPT	T1,T2 , R1
18		Austenite, Ferrite Cementite, Cast iron	Should be able to analyse them			Understand	Chalk & Talk/ PPT	T1,T2 , R1
19		Revision	Revise			Understand	Chalk & Talk/ PPT	T1,T2 , R1
20	3	Unit 3 - Heat treatment of Steel:	Able to know how it works and what changes it make	https:/ /drive. google. com/dr ive/fol	<u>https://driv</u> <u>e.google.co</u> <u>m/drive/fol</u> <u>ders/1hNT</u> <u>5TPaexsmu</u>	Understand	Chalk & Talk/ PPT	T1,T2 , R1
21	5	Annealing, Normalising,	Definition, Process, Formation	<u>ders/1y</u> <u>b0rLS-</u> <u>8KZYn</u>	<u>Q2cB3sX2E</u> <u>bFN1tfJWp</u> <u>Za?usp=sh</u>	Explain	Chalk & Talk/ PPT	T1,T2 , R1
22		Hardening, Tempering	Definition, Process,	<u>UNj A</u> Ws0Q9	aring	Explain	Chalk & Talk/ PPT	T1,T2 , R1

						2 Sector March	INTER PROVIDENCE	
			Formation	<u>pQSO</u> WM0iu				
23		Spheroidising	Definition, Process, Formation	<u>o?usp=</u> sharing		Explain	Chalk & Talk/ PPT	T1,T2 , R1
24		Isothermal transformatio n diagrams for Fe-C alloys	Definition, Process, Formation			Understand	Chalk & Talk/ PPT	T1,T2 , R1
25		Isothermal transformatio n diagrams for Fe-C alloys	Definition, Process, Formation			Explain	Chalk & Talk/ PPT	T1,T2 , R1
26		microstructur es development.	Definition, Process, Formation			Understand	Chalk & Talk/ PPT	T1,T2 , R1
27		Revision				Application	Chalk & Talk/ PPT	T1,T2 , R1
28		Unit 4 - Continuous cooling curves	How curves are formed and how they change properties			Application	Chalk & Talk/ PPT	T1,T2 , R1
29		interpretation of final microstructur es	To be able to interpret them	<u>https:/</u> /drive. google. com/dr	https://driv e.google.co m/drive/fol ders/1hNT 5TPaexsmu Q2cB3sX2E	Application	Chalk & Talk/ PPT	T1,T2 , R1
30	4	properties- austempering	Able to know how it works and what changes it make	ive/fol ders/1y b0rLS- 8KZYn UNj A		Application	Chalk & Talk/ PPT	T1,T2 , R1
31		Martempering	Able to know how it works and what changes it make	Ws0Q9 pQSO WM0iu o?usp= sharing	<u>bFN1tfJWp</u> <u>Za?usp=sh</u> <u>aring</u>	Application	Chalk & Talk/ PPT	T1,T2 , R1
32		case hardening, carburizing,Ni triding	Able to know how it works and what changes it make			Understand	Chalk & Talk/ PPT	T1,T2 , R1

						200	R	
33		cyaniding, carbo- nitriding, flame	Able to know how it works and what changes it make			Understand	Chalk & Talk/ PPT	T1,T2 , R1
34		induction hardening, vacuum Plasma hardening	Able to know how it works and what changes it make			Explain	Chalk & Talk/ PPT	T1,T2 , R1
35		Revision	Revise			Understand	Chalk & Talk/ PPT	T1,T2 , R1
36		Unit 5 - Alloying of steel, properties of stainless steel	Should be able to know how they are formed			Application	Chalk & Talk/ PPT	T1,T2 , R1
37		tool steels, maraging steels	Able to determine the properties based on composition	<u>https:/</u> /drive. google.	https://driv e.google.co m/drive/fol ders/1hNT 5TPaexsmu Q2cB3sX2E	Explain	Chalk & Talk/ PPT	T1,T2 , R1
38	5	Cast irons; grey, white	Able to determine the properties based on composition	com/dr ive/fol ders/1y b0rLS- 8KZYn		Explain	Chalk & Talk/ PPT	T1,T2 , R1
39		malleable and spheroidal cast irons	Formation, Properties, Advantages	<u>UNj_A</u> <u>Ws0Q9</u> pQSO	bFN1tfJWp Za?usp=sh aring	Explain	Chalk & Talk/ PPT	T1,T2 , R1
40		copper and copper alloy (Brass, bronze and cupro- nickel)	Formation, Properties, Advantages	<u>WM0iu</u> <u>o?usp=</u> <u>sharing</u>	<u> </u>	Application	Chalk & Talk/ PPT	T1,T2 , R1
41		Aluminium and Al-Cu – Mg alloys	Formation, Properties, Advantages			Explain	Chalk & Talk/ PPT	T1,T2 , R1
42		Titanium alloys				APPLY	Chalk & Talk/ PPT	T1,T2 , R1

A) TEXT BOOKS:

1. V. Raghavan, "Material Science and Engineering', Prentice Hall of India Private Limited, 1999.

2. W. D. Callister, 2006, "Materials Science and Engineering-An Introduction", 6th Edition, Wiley India.

REFERENCES:

1. Kenneth G. Budinski and Michael K. Budinski, "Engineering Materials", Prentice Hall of India Private Limited, 4th Indian Reprint, 2002.

2. U. C. Jindal, "Engineering Materials and Metallurgy", Pearson, 2011.

X. QUESTION BANK (JNTUH)

DESCRIPTIVE QUESTIONS:

Unit-I

SHORT ANSWER TYPE QUESTIONS

S.NO	QUESTION	BLOOMS TAXONOMY	COURSE OUTCOME
-			
	Discuss number of atoms, co-ordination number, and	Understand	I
	atomic packing factor for each unit cell.		
2	Differentiate frenkel and schottky defect	understand	1
3	Classify the types of defects	understand	1
4	What is atomic packing Factor?	understand	1
5	Explain the influence of grain size on mechanical	understand	1
	properties		
6	Define packing efficiency?	Remember	1
7	Explain the mechanism for formation of grain	understand	1
	boundary		
8	Define intermediate phases?	Remember	1

LONG ANSWER TYPE QUESTIONS

S.No	Question	Blooms Taxonomy Level	Cours e Outco me
1	Prove that FCC is closely packed than BCC by calculating	Evaluate	3
	atomic packing factor for both?		
2	Explain the process of solidification of metals to form	understand	2

	polycrystalline structure.		
3	Discuss how the properties strength, ductility, and electrical	understand	1
	conductivity are affected by these bonding?		
4	Describe solidification process for pure metal in terms of	understand	1
	nucleation and grain growth of metals.		
5	Explain the method of plotting an equilibrium diagram and	understand	2
	derive the lever rule as applied to equilibrium diagram.		
6	Describe Ionic bond, Covalent bond, Metallic bond.	understand	1
7	Differentiate substitutional and interstitial solid solutions with	Analyse	2
	examples.	-	
8	Explain, How does the bonding type influences the properties of	understand	1
	crystals?		

Unit-II

SHORT ANSWER TYPE QUESTIONS

S.NO	QUESTIONS	BLOOMS TAXONOMY LEVEL	COURSE OUTCOME
1	Discuss Lever rule and explain its importance using eutectic system	Understand	1
2	Discuss phase rule and its importance.	Understand	1
3	Discuss binary alloy phase diagram.	Understand	1
4	Discuss non-equilibrium cooling and interstitial compounds.	Understand	1
5	Define eutectoid and peritectoid reactions.	Remember	1
6	Explain electron compounds.	Understand	1
7	Define inter-metallic compounds?	Remember	2

LONG ANSWER TYPE QUESTIONS

S.No.	Question	Blooms Taxonomy Level	Course Outcom e
1	Explain the importance of equilibrium diagrams in the development of new alloys.	Understand	2
2	Draw Cu-Ni phase diagram and indicate the phases, temperatures and compositions.	Apply	2
3	Draw equilibrium diagram for eutectic type of system and discuss its important features.	Apply	2
4	Explain the importance of equilibrium diagrams in the development of new alloys.	Understand	2
5	Explain with sketch isomorphous system and discuss the equilibrium cooling of any one alloy from the above diagram.	Understand	2
6	Explain importance of lever rule.	Understand	1
7	Define peritectic, eutectoid and eutectic reactions.	Remember	1
8	Explain how is the cored structure formed? How it can be	Understand	1

		(NLABLARD DOTTIL BUSED ITTICATION	
	eliminated.		
9	Explain eutectic and peritectic reactions with a diagram? Also explain TTT curve	Remember	1

Unit-III

SHORT ANSWER TYPE QUESTIONS

S.No.	Question	Blooms Taxonomy Level	Course Outcome
1	Explain method of plotting isothermal transformation or TTT diagram.	Understand	1
2	Explain annealing heat treatmen	Understand	2
3	Discuss Normalizing heat treatment.	Understand	2
4	Describe austenite tempering process.	Understand	1
5	Describe martensite tempering process.	Understand	1
6	Classify various heat treatment process	Understand	2
7	Define alpha ferrite, austenite, cementite, delta ferrite.	Remember	2
8	Explain the phase reactions in iron-iron carbide phase diagram.	Understand	2

LONG ANSWER TYPE QUESTIONS

S.No.	Question	Blooms Taxonomy Level	Course Outcome
1	Recommend a heat treatment process to improve the machinability of high carbon steel. Explain the process and indicate the micro structures desired.	Understand	3
2	What is tempering process and Explain micro structures developed during various tempering stages.	Understand	1
3	Describe structural changes that take place when plain carbon steels: 0.8 % C, 0.4% C and 1.2 % C are cooled from austenite region to room temperature.	Understand	2
4	Draw TTT diagram for a eutectoid steel and indicate transformation products.	Apply	1
5	Discuss types of stainless steels and applications.	Understand	1
6	Explain Jominy end quench test used for determining the hardenability of steels.	Understand	2
7	Name the allotropic forms of iron and Explain lattice structure of each.	Understand	1
8	Define alpha ferrite, austenite, cementite, delta ferrite.	Remember	1
9	Explain the phase reactions in iron-iron carbide phase diagram.	Understand	1
10	Explain effect of small quantities of S, P, Mn, and Si upon properties of steel.	Understand	1

11	Distinguish between hypo eutectoid and hyper eutectoid steels	Analyse	1
12	Explain the process and indicate the micro structures desired.	Understand	1

Unit-IV

SHORT ANSWER TYPE QUESTIONS

S.No.	Question	Blooms Taxonomy Level	Course Outcome
1	Explain Austempering	Understand	1
2	Explain Martempering	Understand	1
3	Explain Case Hardening	Understand	1
4	Explain Carburizing	Understand	1
5	Explain Nitriding	Understand	1

LONG ANSWER TYPE QUESTIONS

S.N 0.	Question	Blooms Taxonomy	Course Outcom
1	Explain equilibrium cooling?	Level Understand	<u>e</u>
	Explain cooling of Bi- Cd eutectic type I system.	Understand	1
	Explain cooling of Pb- Sn eutectic type II system.	Understand	1
	Classify various heat treatment process	Understand	1
5	Explain Carbo Nitriding, Cyaniding	Understand	1
6	Explain Flame and Induction Hardening	Understand	1
7	Explain Vaccum and Plasma Hardening	Understand	1

Unit-V

SHORT ANSWER TYPE QUESTION

S.No.	Question	Blooms Taxonomy Level	Course Outcome
1	Discuss heat treatable and non-heat treatable Aluminium alloys.	Understand	2
2	Explain Ni-resist cast iron.	Understand	2
3	Discuss Ni-hard cast iron.	Understand	2
4	Explain precipitation hardening.	Understand	2
5	Explain importance of copper for engineering applications.	Understand	2
6	Define cast irons?	remember	1
7	Define white cast iron and explain its uses.	remember	1
8	Define grey cast iron and its uses.	remember	1
9	Define malleable cast iron and its uses	remember	1

LONG ANSWER TYPE QUESTION

S.N	Question	Blooms	Course
0.	Question	Taxonomy	Outcom

	<i>V</i>		
		Level	e
	Draw Aluminum-copper phase diagram and explain precipitation hardening	Apply	2
2	Explain alpha titanium alloys and their uses	Understand	2
3	Discuss importance of titanium alloys for strategic applications.	Understand	2
	Discuss various types of brasses and their applications.	Understand	2
5	Discuss tin bronzes and important applications	Understand	2
6	What is nodular cast iron? Explain its uses.	Understand	2
7	State factors control the structure of cast iron?	remember	1
8	Discuss duraluminium and its applications.	Understand	2
9	Draw aluminium-copper phase diagram.	Apply	2
10	What is al clad? Explain its advantages	Knowledge	2
11	Explain alpha-beta titanium alloys and their uses	Understand	2
12	Define beta titanium alloys?	remember	1

XI. OBJECTIVE QUESTIONS

UNIT-1

UT	111-1				
1.	The number of protons in an atom is known as				
	(a) Atomic Weight	(b) Atomic Mass	(c) Atomic numbe	er (d) Mass number	
2.	The nature of atomic bond found in diamond is				
	(a) Ionic	(b) Covalent	(c)Metallic	(d)Vander Walls	
3.	Smallest volume of cryst	al which gives atom	ic arrangement is know	wn as	
	(a) Space Lattice	(b)Crystal Structur	e (c)Atomic Structu	re (d)Unit Cell	
4.	Dislocations in materials are				
	(a) Point defects	(b)Line defects	(c)Volume Defect	s (d)Surface defects	
5.	Line imperfection in a cr				
	(a) Schottky defect			on (d)surface defects	
6.	Effective atoms per unit	cell in a BCC lattice	system		
	(a) 2	(b) 3	(c) 4	(d) 6	
7.	1				
	(a) Unit cell of a simple	•			
	(b) Cell containing small				
	(c) Unit cell in which lattice points are only at its corners				
	(d) Basic building block of a crystal				
8.	Alloying element that pro				
	(a) Chromium			(d) Cobalt	
9.	9. The Alloy system representing interstitial solid solutions is				
	(a) Copper-Nickel			(d) Copper-Aluminum	
10. The formation of solid solutions are governed by					
	(a) Lever rule (b) Phase rule (c) Hume-Ruthery rule (d) Kelvin-Plancks rule				
11.	. Physically homogeneous	_	-		
	(a) Alloy (b) I	Phase (c) S	Structure	(d) None of the above	

UNIT-2

- Equilibrium diagrams are constructed by using

 (a) Microstructures
 (b) Heat Treatment
 (c) Cooling Curves
- (a) Microstructures
 (b) Heat Treatment
 (c) Cooling Curves
 (d) Composition

 2. Complete substitutional solid solubility is found in the following system

 (a) Iron-Carbon
 (b) Lead-tin
 (c) Copper-nickel
 (d) Cadmium-bismuth
- 3. The Gibbs phase rule can be represented by the equation (a) P+F=C+2 (b) P-F=C+2 (c) P-C=F+2 (d) P+C=F+2
- 4. At invariant reaction the degree of freedom is (a) 2 (b) 3 (c) 4 (d) 0
- 5. The reaction that takes place within the solid state is (a) Eutectic (b) Peritectic (c) Monotectic (d) Eutectoid
- 6. The relative amounts of the co-existing phases in an alloy system are obtained from(a) Phase rule(b) Lever rule(c) Bain Rule(d) None of the above
- 7. ______ is composed of two or more chemical elements of which atleast one is a metal.
- 8. ______ is an alloy in which the atoms of the solute are distributed in the solvent and has some structure as that of solvent.
- 9. The start of solidification temperature is called ______ temperature and the end of solidification temperature is called ______ temperature.
- 10. In ______ reaction, a solid phase reacts with a second phase to produce a third solid phase on cooling.

UNIT-3

UI	11-5		
1.	Eutectoid steel contains		
	(a) 0.8% carbon (b) 1.7-4.3%C	C (c) More than $4.3%$ C	(d) Less than 0.8%carbon
2.	Which of the following process is	s used for surface hardening	
	(a) Tempering (b) Nitriding	(c) Normalizing	(d) Hardening
3.	Machine tool guide ways are usua	ally hardened by	
	(a) Vacuum hardening (b) Marter	mpering (c) Induction harder	ning (d) Flame Hardening
4.	Which of the following generally	decreases in the steel after q	juench-hardening
	(i) Brittleness (ii) Per	centage Elongation	(iii) Impact strength
	(a) 1 and 2 Only (b) 2 and	nd 3 Only (c) 1 and 3 O	only (d) 1, 2 and 3 Only
5.	Induction hardening is basically a		
	(a)Carburizing process	(b) Surface h (d) None of t	ardening process
	(c) Core hardening process	(d) None of t	he above
6.	When a steel is heated in a furr	ace and then cooled in air	at ordinary temperature, the
	process is one of		
	(a) Annealing (b) Ha		
7.	Which one of the following struc	ture is predominant in norma	lized steel
	(a) Troostile (b) Bai	nite (c) Sorbite	(d) Martensite
8.	Hardness of steel greatly improve		
	(a) Annealing (b) Cya		
9.	is the process		
10	. Austempering is the process of	changing in	to at lower
	temperature (300°C).		

U NIT -4			
1. The percentage	of phosphorus in phosphor b	pronze is	
(a) 0.1	(b) 1	(c) 11.1	(d) 98
2. Invar is used for m	easuring tapes primarily due	e to its	
(a) Non magnetic	properties	(b) High nickel co	ntent
(c)Low coefficient	of thermal expansion	(d) Hardenability	
B. Alloy of copper an	d Zinc is known as		
(a) Brass	(b) Bronze	(c) Monel Metal	(d) Gunmetal
Alloy of copper an	d tin is known as		
(a) Brass	(b) Bronze	(c) Monel Metal	(d)Admiralty Bras
5. Alloy of nickel and	l copper is called		-
(a) Brass	(b) Bronze	(c) Monel metal	(d) Admiralty bras
6. Alloy mostly used	in air craft is		
	(b) Muntz metal		
. Machining propert	ies of steel are improved by	adding	
	1 2		
 An engineer's har Tensile strength of 		steel. d by adding carbon ι	ıpto%.
 An engineer's ham Tensile strength of Presence of sulphu JNIT -5 1. Clay based cera 	imer is made of steel can be safely increase r makes steel brittle. Its effe mics are used for	steel. d by adding carbon u ect can be reduced by	upto%. v adding
 An engineer's har Tensile strength of 0. Presence of sulphy 	imer is made of steel can be safely increase r makes steel brittle. Its effe mics are used for	steel. d by adding carbon ι	ıpto%.
 An engineer's har Tensile strength of Presence of sulphu UNIT -5 1. Clay based cera (a) Aero Craft Par 	imer is made of steel can be safely increase r makes steel brittle. Its effe mics are used for	steel. d by adding carbon u ect can be reduced by (c) Floor-tiles	upto%. v adding
 An engineer's har Tensile strength of 0. Presence of sulphu JNIT -5 1. Clay based cera (a) Aero Craft Par 	imer is made of steel can be safely increase r makes steel brittle. Its effe mics are used for ts (b) Magnets	steel. d by adding carbon u ect can be reduced by (c) Floor-tiles ces are	upto%. v adding
 An engineer's harr Tensile strength of 0. Presence of sulphu JNIT -5 1. Clay based cera (a) Aero Craft Par Ceramic used for 1 (a) Abrasives 	imer is made of steel can be safely increase r makes steel brittle. Its effe mics are used for ts (b) Magnets ining of metallurgical furnad	steel. d by adding carbon u ect can be reduced by (c) Floor-tiles ces are	upto %. v adding (d) None of the above
 An engineer's ham Tensile strength of 0. Presence of sulphu JNIT -5 Clay based cera (a) Aero Craft Par Ceramic used for 1 (a) Abrasives Alumina is a 	imer is made of steel can be safely increase r makes steel brittle. Its effe mics are used for ts (b) Magnets ining of metallurgical furnad	steel. d by adding carbon u ect can be reduced by (c) Floor-tiles ces are (c) Silicates	(d) None of the above (d) Refractory's
 An engineer's ham Tensile strength of Presence of sulphu UNIT -5 1. Clay based cera (a) Aero Craft Par Ceramic used for 1 (a) Abrasives Alumina is a (a) Non ferrous m 	imer is made of steel can be safely increase r makes steel brittle. Its effer mics are used for ts (b) Magnets ining of metallurgical furnad (b) Glasses	steel. d by adding carbon u ect can be reduced by (c) Floor-tiles ces are (c) Silicates	(d) None of the above (d) Refractory's
 An engineer's ham Tensile strength of Presence of sulphy Presence of sulphy I. Clay based cera (a) Aero Craft Par Ceramic used for 1 (a) Abrasives Alumina is a (a) Non ferrous mid. Glass ceramic is a (a) Amorphous so 	imer is made of steel can be safely increase r makes steel brittle. Its efference mics are used for ts (b) Magnets ining of metallurgical furnad (b) Glasses etal (b) Ferrous metals (c lid (b) Crystalline solid	steel. d by adding carbon u ect can be reduced by (c) Floor-tiles ces are (c) Silicates ces are (c) Silicates	apto %. y adding (d) None of the above (d) Refractory's d) Composite Materia e (d) None of the above
 An engineer's ham Tensile strength of Presence of sulphy Presence of sulphy I. Clay based cera (a) Aero Craft Par Ceramic used for 1 (a) Abrasives Alumina is a (a) Non ferrous mid. Glass ceramic is a (a) Amorphous so 	 imer is made of	steel. d by adding carbon u ect can be reduced by (c) Floor-tiles ces are (c) Silicates ces are (c) Silicates ces are (c) Partly crystalline ngths are manufactur	 upto%. adding (d) None of the above (d) Refractory's (d) Composite Material (d) None of the above red by
 An engineer's ham Tensile strength of Presence of sulphy UNIT -5 1. Clay based cera (a) Aero Craft Par Ceramic used for 1 (a) Abrasives Alumina is a (a) Non ferrous miltion Glass ceramic is a 	 imer is made of	steel. d by adding carbon u ect can be reduced by (c) Floor-tiles ces are (c) Silicates ces are (c) Silicates ces are (c) Partly crystalline ngths are manufactur (c) Whisker	apto %. y adding (d) None of the above (d) Refractory's (d) Composite Materia (d) None of the above red by (d) Particular
 An engineer's ham Tensile strength of Presence of sulphy Presence of sulphy UNIT -5 1. Clay based cera (a) Aero Craft Par Ceramic used for 1 (a) Abrasives Alumina is a (a) Non ferrous mid. Glass ceramic is a (a) Amorphous so Parts of uniform ci (a) Fibres 	 imer is made of	steel. d by adding carbon u ect can be reduced by (c) Floor-tiles (c) Silicates (c) Silicates (c) Partly crystalline ngths are manufactur (c) Whisker ngths are manufactu	 adding%. (d) None of the above (d) Refractory's (d) Composite Material (d) None of the above red by (d) Particular red by
 An engineer's ham Tensile strength of Presence of sulphu UNIT -5 1. Clay based cera (a) Aero Craft Par Ceramic used for 1 (a) Abrasives Alumina is a (a) Non ferrous midian Glass ceramic is a (a) Amorphous so Parts of uniform critical factories Parts of uniform critical factories Parts of uniform critical factories 	 imer is made of	steel. d by adding carbon u ect can be reduced by (c) Floor-tiles (c) Silicates (c) Silicates (c) Partly crystalline ngths are manufactur (c) Whisker ngths are manufactur (c) Pultrusion (d)	 adding%. (d) None of the above (d) Refractory's (d) Composite Material (d) None of the above red by (d) Particular red by Vacuum bag molding
 An engineer's ham Tensile strength of Presence of sulphy UNIT -5 1. Clay based ceration (a) Aero Craft Par Ceramic used for 1 (a) Abrasives Alumina is a (a) Non ferrous model Glass ceramic is a (a) Amorphous so Parts of uniform critical (a) Fibres Parts of uniform critical (a) Transfer moldi The composite cor 	 imer is made of	steel. d by adding carbon u ect can be reduced by (c) Floor-tiles (c) Floor-tiles ces are (c) Silicates ces are (c) Partly crystalline ngths are manufactur (c) Whisker ngths are manufactur (c) Pultrusion (d) in a metal matrix is c	 apto%. adding (d) None of the above (d) Refractory's (d) Composite Material (d) None of the above red by (d) Particular red by Vacuum bag molding called
 An engineer's ham Tensile strength of Presence of sulphy Presence of sulphy I. Clay based cera (a) Aero Craft Par Ceramic used for 1 (a) Abrasives Alumina is a (a) Non ferrous midian Glass ceramic is a (a) Amorphous so Parts of uniform crives Parts of uniform crives Parts of uniform crives The composite corries (a) Cermets 	 imer is made of	steel. d by adding carbon u ect can be reduced by (c) Floor-tiles (c) Floor-tiles ces are (c) Silicates (c) Partly crystalline ngths are manufactur (c) Whisker ngths are manufactur (c) Pultrusion (d) in a metal matrix is c) Fibre composites	 apto%. adding%. (d) None of the above (d) Refractory's (d) Composite Material (d) None of the above red by (d) Particular red by Vacuum bag molding called (d) None of the above
 An engineer's ham Tensile strength of Presence of sulphy UNIT -5 1. Clay based cera (a) Aero Craft Par Ceramic used for 1 (a) Abrasives Alumina is a (a) Non ferrous m Glass ceramic is a (a) Amorphous so Parts of uniform criss Parts of uniform criss The composite corision (a) Cermets Orthosilicates have 	 imer is made of	steel. d by adding carbon u ect can be reduced by (c) Floor-tiles (c) Floor-tiles ces are (c) Silicates (c) Partly crystalline ngths are manufactur (c) Whisker ngths are manufactur (c) Pultrusion (d) in a metal matrix is co) Fibre composites ure of	 apto%. adding (d) None of the above (d) Refractory's (d) Composite Material (d) None of the above (e (d) None of the above (f) Particular (f) Particular (f) None of the above (g) None of the above
 An engineer's ham Tensile strength of Presence of sulphy UNIT -5 1. Clay based cera (a) Aero Craft Par Ceramic used for 1 (a) Abrasives Alumina is a (a) Non ferrous m Glass ceramic is a (a) Amorphous so Parts of uniform cr 	 imer is made of	steel. d by adding carbon used and by adding carbon used can be reduced by (c) Floor-tiles (c) Floor-tiles (c) Silicates (c) Silicates (c) Partly crystalline ngths are manufactur (c) Whisker ngths are manufactur (c) Pultrusion (d) in a metal matrix is co) Fibre composites ure of	 adding%. (d) None of the above (d) Refractory's (d) Composite Material (d) None of the above red by (d) Particular red by Vacuum bag molding called (d) None of the above

ii) GATE QUESTIONS:

The "Jominy test" is used to find

 (a) Young's modulus (b) hardenability(c) yield strength (d) thermal conductivity

- 2. The process of reheating the martensitic steel to reduce its brittleness without any significant loss in its hardness is
 - (a) normalising (b) annealing (c) quenching (d)tempering
- 3. During normalizing process of steel, the specimen is heated
 (a) between the upper and lower critical temperature and cooled in still air
 (b) above the upper critical temperature and cooled in furnace
 (c) above the upper critical temperature and cooled in still air
 - (d) between the upper and lower critical temperature and cooled in furnace
- 4. The material property which depends only on the basic crystal structure isa) fatigue strength (b) work hardening (c) fracture strength (d) elastic constant
- 5. The effective number of lattice points in the unit cell of simple cubic, body centered cubic, and face centered cubic space lattices, respectively, are
 (a) 1, 2, 2
 (b) 1, 2, 4
 (c) 2, 3, 4
 (d) 2, 4, 4
- 6. If a particular Fe-C alloy contains less than 0.83% carbon, it is called
 (a) High speed steel
 (b) hypo eutectoid steel
 (c) hyper eutectoid steel
 (d) cast iron
- 7. The main purpose of spheroidising treatment is to improve
 (a) hardenability of low carbon steels (b) machinability of low carbon steels
 (c) hardenability of high carbon steels (d) machinability of high carbon steels
- 8. Liquid + solid (1) on cooling converting into solid (2) reaction is known as:
 (a) Eutectoid reaction (b) Eutectic reaction
 (c) Peritectic reaction (d) Peritectoid reaction
- 9. Structure of common glass is(a) Amorphous (b) Partially crystalline (c) Fully crystalline (d) None of these
- 10. Solid material chemical bonds are
 - (a) Ionic, molecular and fusion (b) Covalent, fusion and fission
 - (c) Ionic, covalent and molecular (d) Fission, molecular and ionic

iii) <u>IES QUESTIONS:</u>

- 1. The process of impregnation in powder metallurgy technique is best described by which of the following?
 - (a) After sintering operation of powder metallurgy, rapid cooling is performed to avoid thermal stresses
 - (b) Low melting point metal is filled in the pores of a sintered powder metallurgy product
 - (c) Liquid oil or grease is filled in the pores of a sintered powder metallurgy product
 - (d) During sintering operation of powder metallurgy, rapid heating is performed to avoid sudden high internal pressure due to volatilization of lubricant.
- 2. Cast iron possessing which one of the following metallographic structures is best suited for damping capacity in engineering applications?
 - (a) Excess cementite

(c) Carbon in temper form

(b) Silicon carbide in flake structure

(d) Spheroidal form of graphite

		An address of the second
3.	Eutectoid reaction occurring at 727 °C w	ith 0.77%C is
	(a) austenite ferrite + pearlite	(c) austenite ferrite + cementite
	(b) austenite ferrite + martensite	(d) austenite martensite +
	bainite	
4.	Jominy end-quench test is carried out to	
	(a) recrystallization temperature of steel	
	(b) glass transition temperature of a mat	erial (d) hardenability of steel
5.	Edge dislocation is a:	
	(a) Point imperfection	(c) Line imperfection
	(b) Surface imperfection	(d)Volume imperfection
6.	• •	NOT present in Iron-Carbon phase diagram?
	(a) Ferrite (b) Cementite	(c)Austenite (d) Martensite
7.	Sialon ceramic is used as:	
	(a)Cutting tool material	(c) Creep resistant
	(b)Furnace linens	(d) High strength
8.	Line imperfection in a crystal is called	
	(a) Miller defect	(c) Frankel defect
_	(b)Schottky defect	(d) Edge dislocation
9.	-	g elements, shifts the lower critical temperature
	line in iron-iron carbide diagram toward	
10	(a)Chromium (b) Nickel	(c) Molybdenum (d) Aluminum
10.		signed as SG 500/7. Here '500' and 7 stand for
	(a) Proof stress in and elongation in % 2	
	(b) Tensile strength in and impact strengt	
	(b)Tensile strength in and elongation in 9	
1.1	(c) Tensile strength in and elongation in 9	-
11.	-	carbon is cooled slowly below the lower critical
	point, it contains	(\cdot) D = -1 (\cdot) (\cdot) (\cdot)
	(a)Ferrite mainly	(c) Pearlite mainly

(b)Ferrite and pearlite

(d) Pearlite and cementite

XII. WEBSITES:

- 1. <u>https://mse.stanford.edu/</u>
- 2. www.iitk.ac.in/msp/
- 3. www.mse.seas.upenn.edu/about-mse/mse-defined.php
- 4. <u>http://www.msm.cam.ac.uk/</u>
- 5. http://www.mse.berkeley.edu/
- 6. <u>http://www.mse.utoronto.ca/Page4.aspx</u>

XIII. EXPERT DETAILS:

1. Dr. Pinaki Prasad Bhattcharjee, Department of Material Science and Metallurgical Engineering, IIT, Hyderabad